CPAZMAL : Cryosphere PAZ SAR Data for MAchine Learning

Christophe Lin-Kwong-Chon, Matthieu Gallet

Workshop SAR & Cryosphere

September 19, 2024

Outline

1 Dataset

- Data acquisition and study area
- Temporal evolution of the data
- Dataset creation

- Dynamic Time Warping (DTW): existing method
- Proposed method
- Results and inference

Conclusions

Appendix

Dataset

A new temporal classification method

Conclusions

Study area

Area over the Mont Blanc Massif:

Figure 1: SAR extend and ground truth.

Conclusions

Glacier classes and labelling

Figure 2: Four types of glacier surfaces. [Kaushik et al., 2022]

Glacier classes	Common classes
ABL: Ablation	FOR: Forest
ACC: Accumulation	CIT: City
HAG: Hanging Glacier	ROC: Rock
ICA: Ice Apron	PLA: Plain

Conclusions

Acquisition availability

SAR data from the PAZ satellite (X-band) in dual polarization (HH, HV) over 2020-2021.

Figure 3: Temporal overview of the PAZ acquisition.

Data seasonal temporal evolution

Histogram distribution of the backscatter coefficient for all different classes in single (HH) and cross (HV) polarization.

Conclusions

Appendix

Data seasonal temporal evolution

Histogram distribution of the backscatter coefficient for all different classes in single (HH) and cross (HV) polarization.

Conclusions

Appendix

Data spatio-temporal evolution

Spatio-temporal and polarimetric comparison of the different classes over the year 2020.

Figure 5: 2020 HH polarization

Conclusions

Appendix

Data spatio-temporal evolution

Spatio-temporal and polarimetric comparison of the different classes over the year 2020.

Figure 5: 2020 HV polarization

Workshop SAR & Cryosphere, September 19, 2024

Conclusions

Glacier classes

- Ground truth extraction on SAR amplitude.
- 5 to 7 ground truth groups/polygons by class (over SPOT imagery).
- Stored with group ID to avoid random sampling strategy.

- Only calibrated data(no terrain correction).
- Full dataset available on Zenodo.
- Including data loader in python with SQL queries and windowing.

Example of the dataset created with the 4 glacier classes and a 7x7 window.

	ABL	ACC	HAG	ICA
train	134 ± 43	132 ± 46	126 ± 57	131 ± 39
test	67 ± 43	69 ± 46	75 ± 57	70 ± 39

 Table 1: Average number of samples (7x7) per class for all training.

Conclusion on the dataset

ightarrow Dataset available on Zenodo.

Improvements in progress for a early release:

- DEM construction with LiDAR data (1m resolution).
- Radiometric and terrain correction.
- More ground truth polygons (11).
- Extended dataset with TerraSAR-X data on 2009/2011.
- Improvements of the data loader with more metadata (polarization, incidence angle).
- Full area with the 4 glacier classes to evaluate models.

Figure 6: QR code for dataset access.

Outline

2 A new temporal classification method

- Dynamic Time Warping (DTW): existing method
- Proposed method
- Results and inference

3 Conclusions

Appendix

Conclusions

Appendix

Dynamic Time Warping (DTW): background

Let Q and S be two time series of the same length n.

Considering a cost matrix C of size $n \times n$:

$$C_{i,j} = (Q_i - S_j)^2 \tag{1}$$

The DTW distance between Q and S is [?]:

$$DTW(Q, S) = \min_{\pi} \left[\sum_{(i,j)\in\pi, K=1}^{K} C_{i,j} \right]^{\frac{1}{2}}$$

$$i(0) = 1, j(0) = 1, i(K) = n, j(K) = n$$

$$|i(k) - j(k)| \le r, \forall k$$
(2)

with π an alignment path between Q and S, and K number of points on the warping function.

Figure 7: DTW alignment path with Sakoe-Chiba band constraint [Sakoe and Chiba, 1978].

Conclusions

Appendix

Data spatio-temporal evolution: application of DTW

Comparison between DTW similarity and Euclidean metric.

Figure 8: Ice apron and Hanging glacier in 2020 with HH polarization

 \rightarrow Comparison with Euclidean distance: $Euc(Q, S) = \left[\sum_{i=1}^{n} (Q_i - S_i)^2\right]^{1/2}$

Conclusions

Appendix

Data spatio-temporal evolution: application of DTW

Comparison between DTW similarity and Euclidean metric.

Figure 8: Ablation and Accumulation in 2020 with HV polarization

 \rightarrow Comparison with Euclidean distance: $Euc(Q, S) = \left[\sum_{i=1}^{n} (Q_i - S_i)^2\right]^{1/2}$

Centroid estimation on monovariate time series with DBA

- Combinaison of HH and HV polarizations with the normalized cross-polarisation ratio given by $(HH HV)/(HH \cdot HV)$
- Patches (7x7) features extraction with
- 3 statistics: log cumulants of order 1, 2 and 3 (κ_1 , κ_2 , κ_3) [Nicolas and Anfinsen, 2002].
- Barycenters DTW Barycenter Averaging (DBA) estimation [Petitjean et al., 2011].

Conclusions

Appendix

Classification with DTW probabilities

• DTW probabilities inference with estimated barycenters:

Figure 10: DTW probabilities inference

Majority vote on DTW distances \mathcal{D} of time series barycenters $\mathbf{M}_{\mathit{c,k}}$

$$\mathbf{p}_{s(t)} = \sum_{i=1}^{c} \begin{bmatrix} \mathcal{D}\left(\mathbf{B}_{0,0}, s_{0}(t)\right) & \cdots & \mathcal{D}\left(\mathbf{B}_{0,k}, s_{k}(t)\right) \\ \vdots & \ddots & \vdots \\ \mathcal{D}\left(\mathbf{B}_{c,0}, s_{0}(t)\right) & \cdots & \mathcal{D}\left(\mathbf{B}_{c,k}, s_{k}(t)\right) \end{bmatrix}$$

(3)

Conclusions

Classifying and inference results

ABL	ACC
39.0	20.4
HAG	ICA

Figure 11: Pixel-wise inference.

Workshop SAR & Cryosphere, September 19, 2024

Conclusions

Outline

2 A new temporal classification method

3 Conclusions

Workshop SAR & Cryosphere, September 19, 2024

- New dataset (CPAZMAL) for **glacier** classification with PAZ SAR data in the Mont Blanc Massif over 2020-2021.
- Temporal classification with DTW method given good and comprehensive results.
- Improvements on the dataset in progress for a early release.

Outline

2 A new temporal classification method

3 Conclusions

Workshop SAR & Cryosphere, September 19, 2024

Bibliography

[allowframebreaks,noframenumbering]

Kaushik, S., Ravanel, L., Magnin, F., Trouvé, E., and Yan, Y. (2022).
Ice aprons in the Mont-Blanc massif (western european Alps): Topographic characteristics and relations with glaciers and other types of perennial surface ice features.

Remote Sensing, 14(21):5557.

- Nicolas, J. and Anfinsen, S. N. (2002).
 Introduction to second kind statistics: Application of log-moments and log-cumulants to the analysis of radar image distributions.
 Trait. Signal, 19(3):139–167.
- Petitjean, F., Ketterlin, A., and Gançarski, P. (2011). **A global averaging method for dynamic time warping, with applications to** <u>clustering.</u> Workshop SAR & Cryosphere, September 19, 2024