Spatio-temporal evolution of Glacier Facies in Himalaya using SAR Remote Sensing : examples from the Khumbu Himalaya

Adina Racoviteanu, A. Manimaran, B. Georjon, J.P Dedieu, & contributions from P. Vinze, M. Kneib, F. Karbou

Context

Snow Line Altitude (SLA) : good proxy for monitoring climate-induced glacier changes

 \rightarrow end of ablation season, SLA_{max} ~ ELA

Field – based monitoring

- limited in high mountain environments
- ~ 36 glaciers monitored in the Himalaya-Karakoram

Optical remote sensing methods

- difficult to automate fully (Rabatel et al. 2012, Racoviteanu et al. 2019, Rastner et al. 2019, Davaze et al. 2020) Mera Glacier

Context

Snow Line Altitude (SLA) : good proxy for monitoring climate-induced glacier changes

 \rightarrow end of ablation season, SLA_{max} ~ ELA

Field – based monitoring

- limited in high mountain environments
- ~ 36 glaciers monitored in the Himalaya-Karakoram

Optical remote sensing methods

- difficult to automate fully (Rabatel et al. 2012, Racoviteanu et al. 2019, Rastner et al. 2019, Davaze et al. 2020)
- surfaces obstructed by snow and clouds (ie. Monsoon-dominated regions)

Khumbu Glacier

Main questions

- How can we **combine SAR + optical data** to track *glacier zones?*
- Can we **automate the method** to apply it to regional scales?

After Rau et al. 2011

Meltwater pool

on glacier

Terminus (toe)

Meltwater

stream

Meltwater

tunnel

Optical: snowlines

Flow trajectory

Image courtesy of Alaska Guide

Study area

Two climatically-distinct areas

Khumbu region (Nepal) :

- \rightarrow monsoon-influenced
- → Mera Glacier (Nepal): field monitored since 2007; clean glacier

Chandra Bhaga basin (India):

- \rightarrow monsoon transition
- → Chhota Shigri (India): field monitored since 2002, almost clean
- →Bara Shigri (debris-covered)

Data acquired

SAR images:

Sentinel-1A images (Alaska Facility Center)

- C-band (wavelength: 5.5 cm), every 12 days, 10 m
- GRD, Interferometric Wide Swath (IW) beam mode, dual pol
- 318 tiles 2017 2021, ASC/DESC

PAZ (Hisdesat)

- X-band (3.75–2.5 cm), every 11 days, 5 m, dual pol
- current acquisitions: June Nov 2024, ASC/DESC

Optical images:

VENµS images (CNES-ISA) franco-israelian

- VM1 phase (2017-2020), Khumbu region
- Every 2 days, 5 m, 12 spectral bands (423.9 908.7 nm)

Field data:

- Ablation stake measurements (→ mass balance, snow heights, 2007 2023)
- AWS, ground camera

ESA SNAP

PAZ scene VH Mera Glacier, June 2024

SAR methodology : progress and challenges

SAR geometric distortion, data loss!

Raw backscatter from Sentinel-1 (ascending orbit) (Rongbuk Glacier) November, 2017

Rugged terrain \rightarrow geometric distortions

~ 15 – 20 % data losses in Khumbu

Previous work : GEE

Bara Shigri 136 km² Sentinel-2 image

- Period 2019 2022
- Focus on classification and ELA detection

From GEE / SNAP to S1Tiling

• CNES + CESBIO tool

generate calibrated and ortho-rectified
Sentinel-1 data on the Sentinel-2 grid
python-based

Now installed on the UGA cluster [©]
Yet to test σ⁰RTC NORMLIM calibration

D. Small, 2011 "Flattening Gamma: Radiometric Terrain Correction for SAR Imagery," IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 8, pp. 3081-3093

https://s1-tiling.pages.orfeotoolbox.org/s1tiling/develop/intro.html

Mera and Naulek Glaciers, Khumbu

Sentinel-1 images

Pre-monsoon

Glacier outline

Dark = wet snow/ice (ablation areas)

Mera and Naulek Glaciers, Khumbu

Sentinel-1 images

Monsoon starts

Mera and Naulek Glaciers, Khumbu

Sentinel-1 images

Monsoon

Mera and Naulek Glaciers, Khumbu

Sentinel-1 images

Monsoon

Mera and Naulek Glaciers, Khumbu

Sentinel-1 images

Post-monsoon

Mera and Naulek Glaciers, Khumbu

Sentinel-1 images

Post-monsoon

Mera and Naulek Glaciers, Khumbu

Post-monsoon, winter season

Glacier outline

• How to quantify the backscatter to extract the wet snow?

Nagler method for wet snow detection

S1Tiling

From RGB to Nagler

Principle: reduced backscattering coefficient (o⁰) of wet snow compared to snow-free / dry snow surfaces → mapping of snowmelt areas (Nagler et al, 2000)

Nagler et al, 2016:

Weight (W) varies with the local incidence angle (ϕ);

Reduced separability of the classes for co-polarized backscatter at ϕ < 30° $\,$, and less for cross-polarized

Output: combined single channel

 $Rc \leq -2dB = wet snow (Nagler et al. 2016)$

Nagler output

Mera / Naulek Glaciers, Khumbu Sept 09, 2018

Nagler et al, 2016:

Weight (W) varies with the local incidence angle (ϕ);

Reduced separability of the classes for co-polarized backscatter at ϕ < 30° $\,$, and less for cross-polarized

Output: combined single channel

*** $Rc \leq -2dB$ = wet snow (Nagler et al. 2016)

Work in progress

1. How to threshold the SAR Nagler output?.... $\sigma = -2.5$ to -3.0 dB not applicable everywhere! \rightarrow need a flexible threshold

Otsu thresholding (Otsu, 1979)

→ optimal threshold by maximizing the between-class variance of gray levels of object and background

Issues and improvements needed:

- Does not capture class distribution
- Need statistical thresholding (i.e based on Std Dev)

Longépé 2008 Guiot et al 2024 James et al 2024 Li et al 2024

2. Compare optical and SAR outputs

Mera and Naulek Glaciers (Nov. 26, 2018)

2. Compare optical and SAR outputs : Sentinel-2 spectral unmixing

Mera / Naulek Glacier

Sentinel-2, 2018-11-24 topographically corrected

Next step: extract snow grain size from spectral unmixing

3. Compare optical and SAR outputs : extract SLAs

7000 6800 Snowline 6600 - 2.0 Elevation (m) Nagler Values 6400 - 1.5 6200 DRY DRY 6000 -1.0 5800 5600 SLA from VENµS Nov 28, 2018 2017-11 2018-01 2018-03 2018-05 2018-07 2018-09 2018-11 2019-01 (Vinze, Racoviteanu et al, JOG, submitted) Date

Heat plots

Winsvold et al. 2018

3. Compare optical and SAR outputs : extract SLAs

Mera / Naulek Glacier 2017/18 hydrologic year

	Measurement	Field	Sentinel-2	Rem. sens
	date	ELA	Image date	SLA
17–	-25 Nov. 2018	5796	24 Nov. 2018	5546

- 250 m mismatch between field and optical SLA!!!
- Optical SLA below the field ELA, <u>why?</u>

Mera / Naulek Glacier 2017/18 hydrologic year

Mera / Naulek Glacier 2017/18 hydrologic year

Mera / Naulek Glacier 2017/18 hydrologic year

5800

5. Use of machine learning to automate threshold selection \rightarrow requires good training data \rightarrow lots of manual digitization?

Previous work (MSc)

..work to be continued!

Challenges & further work

- Difficulties with masks (layover, foreshortening, shadow) \rightarrow loss of data
- SAR data more difficult to process and time consuming

Current work :

O How to threshold the output?..nominal threshold backscatter value σ = -2.5 to -3.0 dB not applicable to glacier areas! ⊗ → need flexible <u>threshold</u>

- Use of ML to automate threshold selection \rightarrow requires good training data
- Further investigate field data (snow profiles etc.) to confirm that SAR SLA = ELA
- So far, good match between SAR (wet) snowline and field ELA

Thank you! Adina.Racoviteanu@univ-grenoble-alpes.fr