Advantages of training
Innovative introduction to engineering sciences, focusing on solar energy (highly growing sector of renewable energy) and on energy efficiency in building sector (responsible for over 40% of world primary energy consumption) will give a unique multidisciplinary education.

Excellence scholarships will be awarded to selected candidates, and funded by the Solar Academy Graduate School, in order to attract students with an excellent academic level and a real motivation.

Activity sectors
Real estate activities | Construction | Modelling and construction | Generation and distribution of electricity, gas, steam and air-conditioning | Specialized, scientific and technical activities |

Partner laboratories
LAMA
LEPMI
LISTIC
LOCIE

Presentation
The Master program ESBC: Energy for Solar Buildings and Cities, is a highly innovative, new degree program preparing to tackle present and future challenges of the energy transition. It is a part of Solar Academy Graduate School recently awarded to University of Savoie Mont Blanc (USMB).

ESBC is a two-year full-time Master’s degree, composed of 4 semesters representing a total of 120 ECTS (officially integrated in the European Bologna system of higher education).

This master program is jointly developed by the School of Engineering (Polytech Annecy-Chambery), School of Business and Administration (Institut d’Administration des Entreprises IAE Savoie Mont Blanc) and School of Law (Faculté de Droit) at USMB.

Located on the Bourget-du-Lac Campus of INES (National Institute for Solar Energy), you will participate in high quality education and multidisciplinary projects, stimulating your creativity and entrepreneurial skills.

Objectives
The training combines practice and theory centered on the fields of solar energy engineering, building physics and materials science, with an opening to computer science, architecture and urban planning, law, economics and sociology.

The training provides the knowledge on how to deploy the energy transition in the building sector, with a particular focus on solar energy.

It provides technical tools for system sizing and management, and develops an in-depth understanding of the energy transition, including its relationship with public policies, economic and industrial transformations, business models, legal concepts and tools specific to the renewable energy sector, in particular solar energy.

Content
The core training, based on Energy, Heat Transfer and Engineering will: develop knowledge and skills useful for engineers and researchers working in the field of solar transition of the built environment and teach you to solve complex problems related to the energy management, design and optimization of multiple-input technological systems.

The courses are taught entirely in English. Foreign language courses, adapted to the needs of the students (English or FLE), will also be offered.

Teaching methods include courses and tutorials, but also participation in conferences and cross-cutting seminars, Summer School, project-based learning, workshops and a research dissertation.
TESTIMONY

Violet Law, a student with a background in energy engineering and public policy, with a bachelor in energy engineering from the School of Energy and Environment, City University, Hong Kong. “Solar energy has a lot of potential for us to study. The Solar academy is a perfect place to explore the topic of solar using an interdisciplinary approach [...] we also need to make sense of economics and policy to ensure that the solar energy efficient and accurate solution for clean energy transition in the future.”

International

Disciplinary and international mobility, as well as immersion in an international research environment, are an integral part of the curriculum, bringing added value to students in terms of training and research. Grants for international mobility, awards for best projects as well as scholarships awarded for excellent academic results are available.

Scholarships

Excellence scholarships are awarded to selected candidates, and financed by the Solar Academy, in order to attract students with an excellent academic level and real motivation (more information on the website).

www.univ-smb.fr/solaracademy/

Practical information

<table>
<thead>
<tr>
<th>Master’s degree M1 et M2</th>
<th>4 Semesters - 120 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours taught: M1: 600</td>
<td>M2: 300 + Internship</td>
</tr>
<tr>
<td>Entry level BAC +3</td>
<td>Courses in english</td>
</tr>
<tr>
<td>Scholarships (4000€/an)</td>
<td>Duration: September to June</td>
</tr>
<tr>
<td>Place: Bourget-du-Lac</td>
<td>Exceptional study environment</td>
</tr>
<tr>
<td>Cost: 243€ + 92€ of CVEC</td>
<td></td>
</tr>
</tbody>
</table>

Master recruitment

Campus France : March, 22, individual oral interviews. March 31, admissions committee.

e-candidat : May, 22, individual oral interviews. June 03, admissions committee.

Scholarships: application on the Solar Academy website March/April

Contact:

Solar Academy - Université Savoie Mont Blanc
Bâtiment Hélios, 60, rue du lac Léman
73370 Le Bourget du Lac, France
Solar.academy@univ-smb.fr

Internship

20 weeks minimum. International experience integrated into the training: teaching by international experts, possibility of internship or training semester abroad.

Continuing study

Ph.D. in Economics, Management, for solar energy deployment and energy efficiency, PhD in Energy Law within the Solar Academy Graduate Program or at a French or foreign university.

Requirement

The ESBC program recruits students with a bachelor degree in Engineering, Physics, Sciences and Technologies or equivalent. A minimum of 180 ECTS credits is required. General knowledge of engineering sciences and physics of transfers is desirable. As well as a sufficient knowledge of English language.