LEVEL OF EDUCATION

<table>
<thead>
<tr>
<th>L1</th>
<th>L2</th>
<th>L3</th>
<th>M1</th>
<th>M2</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACHELOR</td>
<td>MASTER</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GENERAL PREREQUISITES

Hold a B.S. degree in mechanical, electrical, computer or systems engineering, in applied physics or an equivalent degree

LOCATION: Annecy

PRESENTATION

Competencies developed during the cursus:
- Design and achieve a mechatronic system
- Manage a research project
- Master the skills expected in research activities

Objectives:
The Master’s students will gain specialized skills in at least one domain and enough additional skills in other domains to meet the requirements of a multidisciplinary mechatronic project and they will become familiar with the requirements of a research activity.

General structure:
- 4 semesters (30 ECTS/semester) based on blending learning allowing customization of the student cursus according to his/her background, his/her research project and his/her professional project

Detailed academic structure:
- S7-S8-S9 semesters devoted to project-based learning through research topics and through participation in an international challenge, and to academic learning (first two semesters with a core curriculum and elective courses spanning 3 orientations: Innovative mechatronic product design, Autonomous wireless systems, Monitoring and control of mechatronic systems)
- S10 semester: internship in a research structure

DURATION
- Full master degree: two years within an international program (3 semesters of direct classroom + a 4 to 6 month internship). Term starts early September.
- 1 or 2 semesters within an international exchange (no-degree)
MASTER YEAR 1

SEMESTER 7

Courses:
- Mechatronics common framework
- Metrology and Sensors for mechatronic systems
- Project management
- Bibliographical tools
- Communication for research
- Materials for Mechatronics
- Development and deployment frameworks
- Signals and systems, Continuous control
- Physics for mechatronic systems

Projects:
- Mechatronic case study
 To study the scientific and technological answers proposed to solve a given problem - 125h
- Research
 To propose a technological solution of a problem which is part of a research project - 150h
- International challenge
 To take part in a collective project in the framework of an international challenge - 100h

SEMESTER 8

Courses:
- Modeling, simulation and digital analysis
- Core skills, organisations and standards
- Multiphysics coupling in materials
- Finite element simulation
- Instrumentation electronics, MEMS and actuators
- Computer-aided design
- Design of experiments
- Physics for autonomous wireless systems
- Embedded control and computer science
- Architecture and robotics
- Data science
- Security: protect the system from intrusion

Projects:
- Intellectual property
 To study a published patent related to a mechatronic system - 125h
- Research
 To take part in the research project of a member of the academic staff or proposed by a Master 2 student, to study a bottleneck of this project and to propose a solution - 150h
- International challenge
 To take part in a collective project in the framework of an international challenge - 100h
MASTER YEAR 2

SEMESTER 9

Courses: 10 ECTS
- Embedded systems
- Introduction to supervision methods, models and tools
- Intellectual property, Contracts, Law
- Scientific diffusion and Ethics
- Research funding and Ph.D
- Communication

Projects:
- Research 5 ECTS
 To write a scientific article based on the S8 research project or the state of the art on a given mechatronic issue - 125h
- Research 10 ECTS
 To take part in the research project of a member of the academic staff or proposed by a Master 2 student, to study a bottleneck of this project and to propose a solution - 250h
- International challenge 5 ECTS
 To take part in a collective project in the framework of an international challenge - 120h

SEMESTER 10

Internship 30 ECTS
- From 4 to 6 months

3 orientations in the curriculum:
- Innovative mechatronic product design
- Autonomous wireless systems
- Monitoring and control of mechatronic systems
CONTACT
For further information, please contact
Pr. Christine Galez: christine.galez@univ-smb.fr
+33 450 096 511
www.polytech.univ-smb.fr

www.univ-smb.fr/international

+33 479 758 570
incoming.students@univ-smb.fr