Learning, Fusion and Remote Sensing (AFuTé)

Publié le mar 1 Déc 2020

French version 

Group facilitator

Issue and perspectives

Artificial intelligence is at the heart of technological, scientific, economic, societal and environmental transformations. In this context, data modeling for description, decision, prediction and/or forecasting purposes becomes an essential issue. Our workgroup is dedicated to this issue and brings together methodological works dealing with machine learning (deep learning, data mining), the fusion of uncertain data (probabilities, possibilities, belief functions, fuzzy sets, intervals) and signal processing (wavelets, statistical learning, differential geometry). These works are mainly applied to/triggered by the analysis of remote sensing data with a temporal dimension; most often for environmental monitoring purposes (crustal deformation, erosion, deforestation, glacial retreat, marine pollution). Remote sensing work is also being carried out to produce such data, with the main objectives of measuring displacements, detecting changes and inverting models. Our scientific perspectives are multiple and concern 1) the consideration of the volume, uncertainty and complexity (spatial, temporal, physical properties) of data, 2) the fusion of data and/or models, and 3) the interpretability of the obtained results.

Keywords

Deep learning, data mining, data fusion, uncertainties, remote sensing, time series, environmental monitoring.

News

Soutenance de thèse de Olivier Lerda, le 17 décembre 2024 : Détection multivariée robuste pour sonar à croix de Mills

Soutenance de thèse de Hugo Brehier, le 4 décembre 2024: Détection pour l’Imagerie Radar à Travers Murs par décompositions de rang faible et parcimonieuse

Soutenance de thèse de Michaël Dell’aiera le 12 octobre 2024:Des simulations aux données réelles, sur la pertinence des modèles d’apprentissage profond et de l’adaptation de domaine : Application à l’astrophysique avec CTAO et LST-1

Atelier SAR & Cryosphere, Annecy, 19 Septembre 2024

Soutenance de thèse de Suvrat Kaushik,le 23 Janvier 2023: Ice aprons and hanging glaciers: new insights from optical and SAR remote sensing of the MontBlanc massif (western European Alps)

Soutenance de thèse : E. Amri, Automatic Offshore Oil Detection Based On Deep Learning Approaches Using Heterogeneous Data Fusion, 27 juin 2022.

Prix du meilleur article étudiant 2020 décerné à Guilhem Marsy par La Revue Française de Photogrammétrie et de Télédétection pour sa publication « Détection automatique de zones en mouvement dans des séries d’images non recalées : Application à la surveillance des mouvements gravitaires » parue dans le numéro 217-218 spécial du Colloque CFPT 2018.

Publications

Referenced in HAL.

Ongoing projects

Project ATROCE : Study of Frugal Federated Learning

ANR REPED-SARIX: Estimation and recursive prediction of Earth deformation from SAR image time series. 2022-2024.

CNES/TOCSA project SITS Deep : Monitoring of natural territories by satellite optical imaging and deep learning. In collaboration with UMR TETIS and UMR IMS. 2022.

Project iXblue: use of robust statistical methods for object detection and classification in sonar data. iXblue/LISTIC PhD subject. 2020-2024.

CNES/PNTS project SHARE: chronological series of sentinel-1 SAR images in mountainous terrains. Change detection over snow-covered surfaces (dry snow/moist snow) using automatic learning methods. In collaboration with UMR ISTerre, UMR LJK, CNRM, Magellium. 2021-2023.

Members

Professors and associate professors: A. Atto, A. Benoit, Ph. Bolon, R. Boukezzoula, D. Coquin, Y. Dumond, M-P. Huget, G. Mauris, A. Mian, E. Trouvé, Y. Yan, G. Ginolhac, N. Méger, A. Bhanot, Y. Mhiri, C. Lin-Kwong-Chong, A. Lavault.

Ph.D Students : D. El Hajjar, D.Jafuno, E. Moliere, F.-X. Sikoumo Hogue, M. Verlynde, L. Zuccali, S. Bouaziz, M. Salis

Completed projects

Project AFREU : Study of Frugal Federated Learning

Project SMGA: use of AI techniques to detect cavities on mountain slopes. In collaboration with Géolithe. 2021.

Project RINA: creation of a demonstrator using AI methods for an operational management of geological Natural Hazards. In collaboration with CEREMA, BRGM and Géolithe. 2021.

Project Heliocity: classification of solar installation monitoring data using machine learning methods. 2021.

ANR MARGARITA: Modern Adaptive Radar: Great Advances in Robust and Inference Techniques and Application. 2019-2021.

Project TOTAL: oil slick detection, large ocean surface SAR data volumes, heterogeneous data fusion, deep learning. 2018-2021.

ANR ReVeRIES: recreational, interactive and educational plant recognition on smartphones. 2016-2021.

Project LDI I-TURN: real-time monitoring and control of a bar-turning machine using fuzzy systems (fuzzy rules, rule aggregation). 2020.

Project SmarterPlan/Linksium: detection and inventory of business objects by deep learning in 360° images of commercial building interiors. Funded by SATT Linksium. 2020.

CNES/TOSCA project START Deep: monitoring of vegetated territories using remote sensing and deep learning techniques. In collaboration with UMR TETIS and UMR IMS. 2020.

Project Géolithe : AI methods for processing data produced by airborne geological radars. 2020.

CNES/PNTS project: missing data restoration in displacement time series obtained from SAR images by statistical learning. 2019-2020.

GammaLearn: characterization of gamma radiationS by deep learning approaches applied to Cherenkov images provided by a single telescope. In cooperation with UMR LAPP, jointly funded by the European project ASTERICS and the Savoie Mont Blanc Foundation. 2017-2020.

ANR PHOENIX: parsimony, Huge Observations of Earth Non-stationarities from Images Time Series. 2015-2019.

ANR VIP-Mont Blanc: understanding and predicting environmental changes: a research project on the morphological evolution of the Mont Blanc massif. 2014-2018.

FUI G4M: multi-profession and multi-material geodetection. 2014-2017.

FUI MISAC: multi-functional Intelligent Surface for Automative and Aeronautics Cockpits. 2012-2015.

European project INTERREG GLARISKALP : risque glaciaire. 2011-2013.

ANR FOSTER: spatiotemporal data mining: application to the understanding and monitoring of erosion. 2011-2013.

ANR REVES: plant recognition for smartphone interfaces. 2010-2013.

ANR EFIDIR: information extraction and fusion for the measurement of displacements using radar imaging. 2008-2012.

Project ADIXEN: event forecasting in datastreams for predictive maintenance. 2007-2010.

ACI MEGATOR: measurement of the evolution of alpine glaciers by optical and radar remote sensing. 2004-2007.